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A B S T R A C T

This study presents the design and integration of novel adaptive components within the Double-Adaptive
General Variable Neighborhood Search (DA-GVNS) algorithm, aimed at improving its overall efficiency. These
adaptations utilize iteration-based data to refine the search process, with enhancements such as an adaptive
reordering mechanism in the refinement phase and a knowledge-guided approach to adjust the search strategy.
Additionally, an adaptive mechanism for dynamically controlling the shaking intensity was introduced.
The proposed knowledge-guided adaptations demonstrated superior performance over the original DA-GVNS
framework, with the most effective scheme selected for further evaluation. Initially, the symmetric Traveling
Salesman Problem (TSP) was used as a benchmark to quantify the impact of these mechanisms, showing
significant improvements through rigorous statistical analysis. A comparative study was then conducted against
six advanced heuristics from the literature. Finally, the most promising knowledge-guided GVNS (KG-GVNS)
was tested against the original DA-GVNS on selected instances of the Quadratic Assignment Problem (QAP),
where detailed statistical analysis highlighted its competitive advantage and robustness in addressing complex
combinatorial optimization problems.
1. Introduction

Metaheuristics, an essential class of optimization techniques, play a
pivotal role in informing decision-making processes to address complex
and challenging practical optimization problems. These sophisticated
algorithms are indispensable when traditional methods prove inade-
quate due to the combinatorial nature, nonlinearities, or sheer com-
putational complexity of real-world problems encountered in various
domains such as logistics, manufacturing, finance, and transportation,
among others [1,2]. Metaheuristics excel in navigating large solution
spaces, leveraging their ability to explore and exploit the problem
landscape efficiently. By cleverly balancing exploration and exploita-
tion strategies, metaheuristics can effectively guide decision-makers
towards near-optimal or satisfactory solutions, even when an exact
solution is elusive within a reasonable time frame [3]. This adapt-
ability, robustness, and capacity for fine-tuning make metaheuristics
indispensable tools for tackling the intricate optimization challenges
that underpin critical decision-making processes across various sec-
tors, thereby facilitating informed choices and improving operational
outcomes. Their continued advancement and application remain in-
strumental in addressing the complexities of contemporary real-world
optimization problems [4].

The imperative to develop novel, valid, and improved variants of
metaheuristics is paramount within the domain of optimization science.
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It is essential that researchers devote their efforts to genuine advance-
ments in algorithmic design rather than simply repackaging existing
methods under different appellations [5]. The primary motivation to
explore new variants stems from the continuously evolving landscape
of optimization challenges. As real-world problems grow in complexity
and scale, and as computational resources continue to advance, there
is an inherent need to adapt and innovate. Novel variants of meta-
heuristics present opportunities to address unique aspects of problem
domains, improve efficiency, and deliver more robust, accurate, and
reliable solutions. By focusing on substantive improvements rather
than cosmetic modifications, scientists can unlock the true potential
of metaheuristics to facilitate optimal decision-making across various
disciplines, ultimately advancing the frontiers of optimization research
and practice.

A particularly promising research avenue in the field of optimization
lies in the development of adaptive mechanisms that can be seamlessly
integrated into critical components of metaheuristic algorithms [4,6–
8]. These mechanisms can operate at both low and high levels, offering
the potential to dynamically tailor the algorithm’s behavior to suit
the specific characteristics and demands of the optimization problem
at hand. Low-level adaptive mechanisms, involving the development
of tailored mechanisms from the ground up, and high-level adap-
tive mechanisms, leveraging advanced machine learning techniques to
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adapt key components of a metaheuristic, represent two promising av-
enues for enhancing the efficacy of these optimization algorithms [9].
By integrating intelligent, data-driven mechanisms into the core pro-
cesses of these algorithms, it becomes possible to construct improved
solution methodologies that excel in terms of solution quality and
robustness [10].

In alignment with this research direction, a recent contribution
to the field, known as the Double-Adaptive General Variable Neigh-
orhood Search (DA-GVNS), has been introduced [10]. This heuristic
pproach strategically incorporates low-level adaptive mechanisms into
oth the improvement and shaking phases of the renowned Variable
eighborhood Search (VNS) variant, the General Variable Neighbor-
ood Search (GVNS). The empirical investigation carried out in the
forementioned research study elucidated the beneficial influence ex-
rted by these adaptive components on the overall performance of
VNS. In the realm of VNS-based solution methods, a recent survey
onducted by Brimberg et al. (2023) has accentuated the imperative
o explore advanced adaptive strategies. This includes the exploration

of sophisticated approaches for reordering search operators and the de-
velopment and integration of intelligent mechanisms aimed at selecting
ritical method parameters, such as the intensity level for the shaking

phase.
In alignment with the aforementioned research objectives, the

present study embarks on an exploration of innovative adaptive ele-
ments, with the primary aim of improving the computational efficiency
of DA-GVNS. The effectiveness of these enhancements is evaluated
using the Traveling Salesman Problem (TSP) and the Quadratic Assign-
ment Problem (QAP) as benchmark test cases. To this end, this study
encompasses the following key research contributions:

• The incorporation of a novel adaptive re-ordering mechanism
within the improvement phase of the DA-GVNS.

• Development of a knowledge-based adaptive mechanism aimed at
dynamically regulating the level of shaking intensity throughout
each iteration of the DA-GVNS.

• The introduction of an innovative knowledge-guided adaptive
mechanism, strategically devised to facilitate the judicious appli-
cation of the adaptive search strategy.

• The efficiency of the newly proposed Knowledge Guided - GVNS
(KG-GVNS) has been rigorously substantiated by applying a ro-
bust statistical testing methodology.

The paper is structured as follows: Section 2 presents the novel adaptive
components proposed for the DA-GVNS, followed by Section 3, which
outlines the computational study conducted to assess the performance
of the new DA-GVNS method. Finally, concluding remarks and future
research directions are provided in Section 4.

2. Novel adaptive mechanisms for the DA-GVNS

2.1. Adaptive strategies in Metaheuristics

Building on the groundwork laid in the introductory sections, the
focus now shifts to a critical aspect of modern metaheuristics: the
adaptive mechanisms that enhance algorithmic performance by dynam-
ically adjusting to problem-specific conditions and the evolving search
landscape. These adaptive strategies, categorized into three primary
groups, are central to the robustness and efficiency of metaheuristics.

1. Adaptive Operators’ Management. This category encompasses
mechanisms such as Adaptive Operator Selection [12,13] and
Adaptive Neighborhood Management [10,14–17], which are
crucial for dynamically selecting and applying the most ef-
fective operators based on their performance histories. These
adaptations are instrumental in optimizing the search process
by continuously refining the tactics used for exploration and
exploitation, ensuring that the approach of metaheuristic is

ideally suited to the current state of the search.

2 
2. Adaptive Parameter Tuning. Crucial algorithmic parameters
are dynamically adjusted to enhance search behavior, ensur-
ing the search process is efficient and effective under varying
conditions. For instance, the tabu tenure in Tabu Search ad-
justs the memory length of the search history to prevent cyclic
behavior [18], while the temperature parameter in Simulated
Annealing crucially modulates the acceptance probability of sub-
optimal solutions, facilitating escape from local minima [19].
Similarly, the alpha parameter in Reactive Greedy Randomized
Adaptive Search Procedures (GRASP) modulates the balance
between greediness and randomness during the construction
phase, adapting the search strategy to the requirements of the
problem [20]. In evolutionary algorithms such as Genetic Algo-
rithms (GA) and Differential Evolution, mutation and crossover
parameters are pivotal in managing genetic variance to foster ex-
ploration and avoid premature convergence [21]. In Ant Colony
Optimization (ACO), the pheromone evaporation rate is a key
parameter that influences how quickly the pheromone trails,
which guide the search of artificial ants, decay; this prevents the
algorithm from overemphasizing previously successful paths and
encourages exploration of new solutions [22]. Additionally, the
population size in metaheuristics like GA and Particle Swarm
Optimization (PSO) is crucial for maintaining genetic diversity
and ensuring a robust search process [23,24].

3. Adaptive Control of Exploration–Exploitation Balance. This
category encompasses adaptive mechanisms that effectively
manage the balance between exploring new regions of the
search space and exploiting well-understood areas to refine
solutions. Techniques such as the Adaptive Search Strategy
selectively apply different search methodologies, including first
improvement and best improvement strategies, to optimize solu-
tion development processes [10,25]. Adaptive Restart Strategies
involve reinitializing the search from new starting points to
overcome local optima [20]. Additionally, Advanced Diversity
Control mechanisms are employed to prevent the algorithm
from stagnating due to limited exploration of the solution space
or from inefficiently exploring due to excessive diversity [26–
28]. These adaptive controls are crucial in avoiding premature
convergence on suboptimal solutions and in driving continuous
progress towards the global optimum.

2.2. Adaptive approaches within VNS methods

In recent years, a considerable body of research has been dedicated
to enhancing the performance of VNS-based solution methodologies
through the consideration of adaptive procedures. This research focus
has primarily gravitated towards the investigation of two primary cat-
egories: low-level adaptations [29–31] and high-level adaptations [17,
32]. These adaptive mechanisms have been designed with the specific
aim of optimizing the reordering of local search operators within the
improvement phase of VNS-based solution approaches. However, it
is worth noting that a comparatively limited body of work has ad-
dressed distinct avenues, including VNS schemes that adapt solely dur-
ing the shaking phase [33] or those that encompass adaptive reordering
mechanisms for both the improvement and shaking phases [10,34].

2.3. The DA-GVNS method

GVNS represents a formidable iteration of VNS, demonstrating its
adaptability and effectiveness in addressing a spectrum of challenging
ptimization problems, such as routing and assignment problems. [35–

39]. For a more comprehensive understanding of the GVNS, the reader
is referred to the works of Brimberg et al. [11],Hansen et al. [40],
and Karakostas et al. [33].
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Algorithm 1 The Double Adaptive GVNS
1: procedure DA-GVNS(𝑆 , 𝑘𝑚𝑎𝑥, 𝑚𝑎𝑥_𝑡𝑖𝑚𝑒, 𝑙𝑚𝑎𝑥, 𝐿𝑆_𝐼 𝑂 , 𝑆 𝐻_𝐼 𝑂)
2: while 𝐶 𝑃 𝑈 _𝐶 𝑇 ≤ 𝑚𝑎𝑥_𝑡𝑖𝑚𝑒 do
3: 𝑆 ℎ𝑎𝑘𝑖𝑛𝑔 𝑂 𝑟𝑑 𝑒𝑟 = 𝑆 ℎ𝑎𝑘𝑖𝑛𝑔_𝐴𝑑 𝑎𝑝𝑡𝑖𝑣𝑒_𝑀 𝑒𝑐 ℎ𝑎𝑛𝑖𝑠𝑚(𝑆 ℎ𝑎𝑘𝑖𝑛𝑔 𝑂 𝑟𝑑 𝑒𝑟, 𝑆 𝐻_𝐼 𝑂 , 𝑆 ℎ𝑚𝑎𝑥)
4: for 𝑘 ← 1, 𝑘𝑚𝑎𝑥 do
5: for 𝑖 ← 1, 𝑆 ℎ𝑚𝑎𝑥 do
6: 𝑙 = 𝑆 ℎ𝑎𝑘𝑖𝑛𝑔 𝑂 𝑟𝑑 𝑒𝑟(𝑖)
7: 𝑆∗ = 𝑆 ℎ𝑎𝑘𝑒(𝑆 , 𝑙)
8: 𝐿𝑜𝑐 𝑎𝑙_𝑆 𝑒𝑎𝑟𝑐 ℎ_𝐴𝑑 𝑎𝑝𝑡𝑖𝑣𝑒_𝑀 𝑒𝑐 ℎ𝑎𝑛𝑖𝑠𝑚(𝐿𝑆_𝑂 𝑟𝑑 𝑒𝑟, 𝐼 𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠_𝐶 𝑜𝑢𝑛𝑡𝑒𝑟)
9: 𝑆′ = 𝑝𝑉 𝑁 𝐷(𝑆∗, 𝑙𝑚𝑎𝑥, 𝐿𝑆_𝑂 𝑟𝑑 𝑒𝑟)

10: if 𝑓 (𝑆′) < 𝑓 (𝑆) then
11: 𝑆 ← 𝑆′

12: end if
13: end for
14: end for
15: end while
16: return 𝑆
17: end procedure
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Table 1
Notation and Description.

Symbol Description

S Current solution in the search space
kmax Maximum shaking level
𝑚𝑎𝑥_𝑡𝑖𝑚𝑒 Maximum allowed execution time
𝑙max Maximum number of local search operators
𝐿𝑆_𝐼 𝑂 Initial order of local search operators
𝑆 𝐻_𝐼 𝑂 Initial shaking order for solution perturbation
𝑆 ℎmax Maximum number of shaking operators
𝑓 (𝑆) Objective function value of solution 𝑆
𝑆′ New solution generated from local search or shaking
𝑆∗ Temporary solution used during shaking phase
𝑆 ℎ𝑎𝑘𝑖𝑛𝑔 𝑂 𝑟𝑑 𝑒𝑟 Order of application for shaking operators
𝐿𝑆_𝑂 𝑟𝑑 𝑒𝑟 Order of local search operators
𝑛 Problem instance size or number of cities/nodes
𝑇 𝑈 𝐼 Cumulative count of iterations with no improvement
𝐼 𝑇 𝐸 𝑅 Total number of iterations executed so far
𝑃 𝐵 𝑆 Objective value of the best solution found prior to the

current iteration
𝐶 𝐵 𝑆 Objective value of the best solution found in the current

iteration
𝐶 𝑃 𝑈 _𝑆 𝑇 CPU time at the start of the algorithm or a specific

procedure
𝐶 𝑃 𝑈 _𝐶 𝑇 Current CPU time used by the algorithm or procedure
𝐹 𝐼 Flag indicating if the first improvement strategy is used
𝐺 𝑙 𝑜𝑏𝑎𝑙_𝐵 𝑆 Objective value of the global best solution found so far

A promising evolution of GVNS, incorporating adaptive mecha-
nisms for the reordering of search operators during both the improve-

ent and the shaking phases, has recently emerged [10] and it has
already been adopted to solve efficiently complex real-world opti-

ization problems [41,42]. Before presenting the pseudocode of the
DA-GVNS, Table 1 provides a concise glossary of the symbols and their
respective meanings to facilitate understanding of the notation used
throughout this paper.

Algorithm 1 succinctly outlines the procedural steps of the DA-
VNS as detailed in Karakostas and Sifaleras [10].

The DA-GVNS is formulated through the incorporation of three
ell-established local search operators: the Swap operator, the Relo-

cate operator, and the 2-Opt operator. These operators are utilized
within both the improvement and shaking phases of the algorithm.
They are seamlessly integrated into a pipe Variable Neighborhood
Descent (pVND) method [11], complemented by an adaptive reordering
mechanism, thus constituting the core of the algorithm’s improve-

ent component. Additionally, the same operators are harmoniously
integrated into an intensified shaking approach, accompanied by an
daptive reordering procedure, which comprises the fundamental ele-
ents of the shaking component within the DA-GVNS framework. The

daptive mechanisms utilized in this context draw upon an empirical
 q

3 
evaluation of the previous performance of the operators. This eval-
uation is based on the frequency of improvements attained by each
operator during previous iterations of the algorithm. Subsequently,
these empirical data inform the strategic determination of the most
effective execution order for these operators in subsequent iterations.

2.4. Improved adaptive features

This section introduces innovative adaptive enhancements designed
to increase the efficiency of the DA-GVNS. The first step in this process
nvolves the identification of critical components, with the exclusion of
lternative local search operators from the purview of consideration.
his exclusion is made because the primary objective of this study is
o explore the potential benefits of advanced adaptive mechanisms in
nhancing the performance of the DA-GVNS. Therefore, in alignment
ith the prevailing research trends delineated in recent scientific con-

ributions on adaptive enhancements within the framework of VNS
ethods [4,10,11,17,25,38], this study directs its attention to specific

components of the DA-GVNS:

• Reordering of local search operators in the improvement phase.
• Search strategy.
• Dynamic adaptation of the shaking intensity level.

2.4.1. New reordering adaptive feature
Regarding the adaptive mechanism for reordering operators during

he improvement phase, relying solely on the frequency of improve-
ents achieved by each operator in previous iterations may yield

imited benefits in terms of establishing an efficient order for local
earch operators. This limitation arises from the omission of critical
nformation regarding the magnitude of improvements and the requi-
ite execution time for each operator. Furthermore, adopting a more
ntricate reordering strategy may potentially consume a substantial
mount of computational time without a guaranteed commensurate
nhancement in solution quality.

Consequently, this study endeavors to address this challenge by
ntroducing a balanced adaptive reordering approach. Specifically,
he Relative Improvement per Execution Second (RIPES) metric is
omputed in each iteration of the algorithm for each local search
perator. To facilitate this calculation, an array of dimensions 1 ×
𝑚𝑎𝑥, denoted as RIPES(:), is employed instead of the previously used
 𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠_𝐶 𝑜𝑢𝑛𝑡𝑒𝑟 within the DA-GVNS framework. Similarly, each
osition of RIPES(:) is associated with an individual search operator.

The formula for calculating RIPES for each local search operator is
expressed as follows: 𝑅𝐼 𝑃 𝐸 𝑆(𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟′𝑠 𝑛𝑢𝑚𝑏𝑒𝑟) =

𝑃 𝐵 𝑆
𝐶 𝐵 𝑆

𝑂 𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠′𝐸 𝑥𝑒𝑐 𝑢𝑡𝑖𝑜𝑛𝑇 𝑖𝑚𝑒 .
This novel approach aims to comprehensively account for both the

uality of improvements and the associated execution time, thereby
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enabling a more refined and effective operator re-ordering strategy
ithin the DA-GVNS algorithm.

Similarly to the approach used in the DA-GVNS framework, when
a specific iteration does not produce improvements, the subsequent
iteration proceeds by adhering to an initial predefined sequence LS_IO
for executing local search operators. Conversely, in instances where
improvements have been realized during a given iteration, an adap-
tive reordering strategy is invoked. This adaptive mechanism involves
arranging the local search operators in descending order based on
their respective RIPES values. The pseudocode of the modified adaptive
mechanism is provided in Algorithm 2.
Algorithm 2 Local_Search_Adaptive_Mechanism
1: procedure Local_Search_Adaptive_Mechanism(𝐿𝑆_𝑂 𝑟𝑑 𝑒𝑟, 𝐿𝑆_𝐼 𝑂 , 𝑅𝐼 𝑃 𝐸 𝑆)
2: if no improvement is found in any neighborhood then
3: 𝑁 𝑒𝑤_𝐿𝑆_𝑂 𝑟𝑑 𝑒𝑟 ← 𝐿𝑆_𝐼 𝑂
4: end if
5: if an improvement is found then
6: 𝑁 𝑒𝑤_𝐿𝑆_𝑂 𝑟𝑑 𝑒𝑟 ← 𝐷 𝑒𝑠𝑐 𝑒𝑛𝑑 𝑖𝑛𝑔_𝑂 𝑟𝑑 𝑒𝑟(𝐿𝑆_𝑂 𝑟𝑑 𝑒𝑟, 𝑅𝐼 𝑃 𝐸 𝑆)
7: end if
8: 𝐿𝑆_𝑂 𝑟𝑑 𝑒𝑟 ← 𝑁 𝑒𝑤_𝐿𝑆_𝑂 𝑟𝑑 𝑒𝑟
9: return 𝐿𝑆_𝑂 𝑟𝑑 𝑒𝑟
0: end procedure

2.5. Knowledge-guided adaptive search strategy

The concept of an adaptive search strategy entails the dynamic
selection between two distinct search strategies: the best improvement
search strategy and the first improvement search strategy. Karakostas
et al. (2019) put forth an adaptive search strategy that makes a choice
etween the first and best improvement search strategies, primarily
ontingent on the problem instance’s size. On the contrary, a more
omplex approach has been advanced by Ren et al. (2020). In their
ork, the authors introduced a probabilistic function that takes into

onsideration both the current iteration number and the maximum iter-
ation limit. The core premise underlying this approach is the utilization
of the best improvement search strategy initially and, as the execution
progresses towards completion, transitioning to the first improvement
search strategy.

This study seeks to leverage the data generated during the compu-
ational process, encompassing metrics such as execution time, unim-
roved iterations or solution quality rates, and the size of the prob-

lem instance (indicated by 𝑛). To achieve this goal, the research has
ormulated two distinct mathematical expressions:

• Percentage of Unimproved Iterations (PUI) - based formula:

𝑃 𝑈 𝐼_𝐹 𝑎𝑐 𝑡𝑜𝑟 = 𝐶 𝑃 𝑈 _𝐶 𝑇 − 𝐶 𝑃 𝑈 _𝑆 𝑇
𝑛

⋅
𝑇 𝑈 𝐼
𝐼 𝑇 𝐸 𝑅

• Solution Quality Improvement Rate (SQIR) - based formula:

𝑆 𝑄𝐼 𝑅_𝐹 𝑎𝑐 𝑡𝑜𝑟 = 𝐶 𝑃 𝑈 _𝐶 𝑇 − 𝐶 𝑃 𝑈 _𝑆 𝑇
𝑛

⋅
𝑃 𝐵 𝑆 − 𝐶 𝐵 𝑆

𝑃 𝐵 𝑆

The approach based on the PUI serves as an indicator of how
frequently the solution method achieves improvements, rendering it a
potentially effective means of detecting stagnation or the absence of
progress within the algorithm. On the contrary, the approach founded
on SQIR guides the decision to change the search strategy based not
solely on the frequency of improvements but also on their magnitude.
However, the SQIR-based approach may not encompass a comprehen-
sive assessment of the overall algorithmic behavior, as the PUI-based
approach does, and it might refrain from triggering search strategy
switches in cases where improvements are consistently small. To make
a well-informed selection between these criteria, extensive experimen-
tation is imperative, encompassing a diverse array of problem in-
stances. The mechanism introduced for the knowledge-guided adaptive
selection of search strategy is presented in Algorithm 3.

Based on offline testing, two distinct values are taken into consid-
ration for the parameter, denoted as 𝐹 𝑎𝑐 𝑡𝑜𝑟𝑃 𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟. These specific
 o
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values are 0.1 and 0.5. To clarify, the 𝐹 𝑎𝑐 𝑡𝑜𝑟𝑃 𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 values were
strategically set to 0.1 and 0.5 to regulate the adaptive switching
between the first improvement and best improvement strategies. A
value of 0.1 enacts as a low threshold and emphasizes exploration
by maintaining the algorithm in the first improvement phase for a
onger duration. In the PUI-based formula, this value ensures that the
lgorithm continues exploring even after several unimproved iterations,
s long as the stagnation remains relatively low. In the SQIR-based
ormula, the algorithm avoids switching to best improvement unless the
olution quality improvement rate drops significantly, which signals the
eed for intensification.

Conversely, a value of 0.5 enacts as a mid-range threshold and rep-
resents a balanced approach, facilitating a more aggressive transition
to the best improvement search strategy. In the PUI-based formula,
he algorithm begins intensifying the search when unimproved iter-
tions constitute a larger portion of the total iterations (e.g., half).
imilarly, in the SQIR-based formula, the algorithm switches to best
mprovement when the solution quality improvement rate drops below
0%, ensuring that moderate improvements are sufficient to trigger
n intensified search. These thresholds provide a clear and effective
alance between exploration and exploitation, allowing the algorithm
o adapt dynamically to the evolving search landscape.

2.5.1. Adaptive configuration of shaking intensity level
The last adaptive mechanism introduced pertains to the dynamic ad-

justment of the parameter 𝑘, which signifies the degree of perturbation
pplied in each iteration of the algorithm. Within each outer iteration

(refer to line 2 of Algorithm 1), the parameter 𝑘 is initialized to a value
of one. To facilitate the updating of this pivotal parameter, two formu-
las have been developed, taking into account pertinent data concerning
relative improvements, the frequency of improvements, and the size of
the problem instance. The parameter 𝑘 undergoes a reduction whenever
an improvement is achieved, while it experiences an increase under
different circumstances. These mathematical expressions are expressed
in Eqs. (1) and (2). The usage of the minus sign within the provided
ormulas signifies the intended reduction of the parameter, while the
ncorporation of the plus sign in the same equations is indicative of the
ncrease of the parameter 𝑘. To clarify, nint() is an elemental intrinsic
unction in Fortran programming language, which returns the nearest

integer to its argument.

𝑘 = nint
(

𝑘 ⋅
(

1 − |Global_BS − CurrentSolution|
Global_BS

))

(1)

𝑘 = nint
(

𝑘 ⋅
(

1 − 𝑒−
TUI
𝑛

))

(2)

2.5.2. The improved DA-GVNS
Herein, the DA-GVNS algorithm with the novel proposed adaptive

features is provided in Algorithm 4.

3. Computational study

3.1. Computing environment

The proposed DA-GVNS, along with other developed GVNS variants,
was implemented using the Fortran programming language and was
executed using the Intel Fortran compiler version 18.0, using the /O3
optimization option. These computational procedures were carried out
on a PC running the Windows 10 Home 64-bit operating system,
equipped with an Intel Core i7-9750H CPU operating at a clock speed
of 2.6 GHz and 16 GB of RAM. The computational experiments were
carried out on a set of symmetric TSP instances obtained from TSPLib
(http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95) as well as on
 set of QAP instances from QAPLib (https://qaplib.mgi.polymtl.ca),
nd a CPU execution time limit of 60 s was imposed on all the
eveloped DA-GVNS-based heuristics. It is essential to clarify that
he reported results represent the average and best objective values

btained from 10 independent runs for each problem instance.

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95
https://qaplib.mgi.polymtl.ca
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Algorithm 3 Adaptive_Search_Strategy_Update
1: procedure Adaptive_Search_Strategy_Update(𝐶 𝑃 𝑈 _𝐶 𝑇 , 𝐶 𝑃 𝑈 _𝑆 𝑇 , 𝑛, 𝑇 𝑈 𝐼 , 𝐼 𝑇 𝐸 𝑅, 𝑃 𝐵 𝑆 , 𝐶 𝐵 𝑆 , 𝐹 𝐼)
2: if (PUI is true) then
3: 𝐶 𝑎𝑙 𝑐 𝑢𝑙 𝑎𝑡𝑒 𝑃 𝑈 𝐼 𝐹 𝑎𝑐 𝑡𝑜𝑟
4: 𝐹 𝑎𝑐 𝑡𝑜𝑟 = 𝑃 𝑈 𝐼_𝐹 𝑎𝑐 𝑡𝑜𝑟
5: else
6: 𝐶 𝑎𝑙 𝑐 𝑢𝑙 𝑎𝑡𝑒 𝑆 𝑄𝐼 𝑅 𝐹 𝑎𝑐 𝑡𝑜𝑟
7: 𝐹 𝑎𝑐 𝑡𝑜𝑟 = 𝑆 𝑄𝐼 𝑅_𝐹 𝑎𝑐 𝑡𝑜𝑟
8: end if
9: if (𝐹 𝑎𝑐 𝑡𝑜𝑟 ≤ 𝐹 𝑎𝑐 𝑡𝑜𝑟𝑃 𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟) or (𝐹 𝑎𝑐 𝑡𝑜𝑟 ≥ 1) then
0: 𝐹 𝐼 = 𝑓 𝑎𝑙 𝑠𝑒

11: else
12: 𝐹 𝐼 = 𝑡𝑟𝑢𝑒
13: end if
14: return 𝐹 𝐼
15: end procedure
Algorithm 4 The improved DA-GVNS
1: procedure improved_DA-GVNS(𝑆 , 𝑚𝑎𝑥_𝑡𝑖𝑚𝑒, 𝑙𝑚𝑎𝑥, 𝐿𝑆_𝐼 𝑂 , 𝑆 𝐻_𝐼 𝑂)
2: while 𝐶 𝑃 𝑈 _𝐶 𝑇 ≤ 𝑚𝑎𝑥_𝑡𝑖𝑚𝑒 do
3: 𝑆 ℎ𝑎𝑘𝑖𝑛𝑔 𝑂 𝑟𝑑 𝑒𝑟 = 𝑆 ℎ𝑎𝑘𝑖𝑛𝑔_𝐴𝑑 𝑎𝑝𝑡𝑖𝑣𝑒_𝑀 𝑒𝑐 ℎ𝑎𝑛𝑖𝑠𝑚(𝑆 ℎ𝑎𝑘𝑖𝑛𝑔 𝑂 𝑟𝑑 𝑒𝑟, 𝑆 𝐻_𝐼 𝑂 , 𝑆 ℎ𝑚𝑎𝑥)
4: 𝑘 ← 1
5: for 𝑖 ← 1, 𝑆 ℎ𝑚𝑎𝑥 do
6: 𝑙 = 𝑆 ℎ𝑎𝑘𝑖𝑛𝑔 𝑂 𝑟𝑑 𝑒𝑟(𝑖)
7: 𝑆∗ = 𝑆 ℎ𝑎𝑘𝑒(𝑆 , 𝑙)
8: 𝐿𝑜𝑐 𝑎𝑙_𝑆 𝑒𝑎𝑟𝑐 ℎ_𝐴𝑑 𝑎𝑝𝑡𝑖𝑣𝑒_𝑀 𝑒𝑐 ℎ𝑎𝑛𝑖𝑠𝑚(𝐿𝑆_𝑂 𝑟𝑑 𝑒𝑟, 𝑅𝐼 𝑃 𝐸 𝑆)
9: 𝑆′ = 𝑝𝑉 𝑁 𝐷(𝑆∗, 𝑙𝑚𝑎𝑥, 𝐿𝑆_𝑂 𝑟𝑑 𝑒𝑟, 𝑅𝐼 𝑃 𝐸 𝑆)

10: if 𝑓 (𝑆′) < 𝑓 (𝑆) then
11: 𝑆 ← 𝑆′

12: Use Equation (1)
13: else
14: Use Equation (2) with plus sign
15: end if
16: end for
17: Apply the 𝐴𝑑 𝑎𝑝𝑡𝑖𝑣𝑒_𝑆 𝑒𝑎𝑟𝑐 ℎ_𝑆 𝑡𝑟𝑎𝑡𝑒𝑔 𝑦_𝑈 𝑝𝑑 𝑎𝑡𝑒
8: end while
9: return 𝑆
0: end procedure
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Table 2
Percentage Deviation from Optimal Values Across Methods.

Method Average Best

DA-GVNS 8.47 7.35
DA-GVNS_AR 8.44 7.33
DA-GVNS_AR_PUI_01 7.95 6.33
DA-GVNS_AR_PUI_05 7.67 6.27
DA-GVNS_AR_SQIR_01 8.11 6.8
DA-GVNS_AR_SQIR_05 7.88 6.55

3.2. Computational results on symmetric TSP

This section presents the results of a systematic computational
analysis undertaken to discern the most efficient iteration of the DA-

VNS algorithm, enhanced by the novel adaptive features introduced
n this study. Herein, it should be clarified that the classic Nearest

Neighbor heuristic [43] was employed to initialize each variant of
he DA-GVNS method. Consequently, all methods commenced from
he same initial solution for each TSP instance, ensuring a consistent

starting point across all experimental runs. Table 2 provides a summary
f the percentage discrepancy between the averages of the optimal

values and the averages, as well as the best-found solutions, obtained
through each respective solution method.

To provide clarity, the term DA-GVNS denotes the initial method as
introduced by Karakostas and Sifaleras [10], while the method denoted
s ‘‘DA-GVNS_AR’’ signifies the incorporation of an alternative adaptive

reordering approach within the improvement step of the 𝐷 𝐴−𝐺 𝑉 𝑁 𝑆.
Furthermore, the terms DA-GVNS_AR_PUI_01 and DA-GVNS_AR_PUI_05

correspond to the ‘‘DA-GVNS_AR’’ method integrated with the novel

5 
adaptive search strategy based on the PUI approach. On the contrary,
the terms DA-GVNS_AR_SQIR_01 and DA-GVNS_AR_SQIR_05 denote the
amalgamation of the ‘‘DA-GVNS_AR’’ method with the adaptive search
strategy approaches founded on SQIR. The notations 01 and 05 corre-
spond to the values ‘‘0.1’’ and ‘‘0.5’’ assigned to the parameter known
as FactorParameter within the adaptive search strategy mechanism.

The beneficial impact of the novel adaptive features on the per-
formance of the DA-GVNS is evident. Among the newly introduced
methods outlined in Table 2, the DA-GVNS_AR_PUI_05 method demon-
trates notably superior results. To be precise, it enhances the results
chieved by the ‘‘DA-GVNS’’ by approximately 1% in terms of average

solutions and approximately 1.1% in terms of the best-found solutions.
Although the percentage improvements attained through the incorpo-
ration of the proposed knowledge-guided adaptive mechanisms may
appear modest, it is essential to underscore that the principal advantage
ies in the sustained and consistent enhancements realized across all
roblem instances.

The computational analysis proceeds with the selection of DA-
VNS_AR_PUI_05 as the primary solution methodology, and additional
daptive features, as proposed, are subjected to testing within this
ramework. These knowledge-guided adaptive features encompass the
pproaches devised for the adaptive adjustment of the shaking intensity
evel of the solution method. More specifically, the following variants
f DA-GVNS_AR_PUI_05 are derived:

• The solution method that incorporates Eq. (1) in both cases,
whether an improvement is achieved or not, is denoted as DA-
GVNS_AR_PUI_05_A.

• The solution method that integrates Eq. (2) in both cases, whether
or not an improvement is achieved, is designated as
DA-GVNS_AR_PUI_05_B.
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Table 3
Percentage Deviation from Optimal Values for DA-GVNS_AR_PUI_05_X
Variants (X = A, B, C, D).

Method Average Best

DA-GVNS 8.47 7.35
DA-GVNS_AR_PUI_05_A 8.21 7.35
DA-GVNS_AR_PUI_05_B 8.26 7.09
DA-GVNS_AR_PUI_05_C 6.5 6.08
DA-GVNS_AR_PUI_05_D 8.33 7.19

Table 4
Results of the conducted Shapiro–Wilk Normality Test.

Method p-Value

DA-GVNS 3.97 × 10−22
DA-GVNS_AR_PUI_05_C 3.99 × 10−22

• The solution method that uses Eq. (1) when an improvement is
observed and Eq. (2) otherwise is labeled as
DA-GVNS_AR_PUI_05_C.

• The solution method that employs Eq. (2) once an improvement is
detected, and Eq. (1) otherwise is referred to as
DA-GVNS_AR_PUI_05_D.

Table 3 clearly demonstrates that among the variants of
A-GVNS_AR_PUI_05, the one that applies Eq. (1) once an improvement

s detected, and Eq. (2) otherwise consistently produces significantly
better results compared to the other proposed variants. To be precise,
his specific solution methodology produces a significant improvement
f approximately 1.8% in terms of average solutions and approximately
.2% in terms of the best-found solutions compared to the conventional
A-GVNS method. Therefore, DA-GVNS_AR_PUI_05_C represents the
ewly formulated variant of the solution method, a result of incorpo-
ating the knowledge-guided adaptive mechanisms introduced in this

study.
An interesting observation related to the adaptive selection of the

shaking intensity level is that its upper limit coincides with the prede-
ined parameter kmax utilized in the original DA-GVNS (kmax = 8 [10]).

However, the key distinction becomes apparent in the frequency and
istribution of specific values of k. This disparity may be due to the

adaptive nature of the mechanism, which dynamically adjusts k based
on the algorithm’s performance and problem characteristics, potentially
leading to a more diverse range of values during its execution.

To determine the statistical significance of the difference observed
between the proposed solution method and the conventional DA-GVNS,
a rigorous statistical analysis was carried out. More specifically, a
hapiro–Wilk normality test was used to examine whether the indepen-
ent results generated by both methods follow the normal distribution.

As is evident from the p-values presented in Table 4, it is clear
that neither dataset follows a normal distribution. Consequently, the
application of a non-parametric statistical test becomes necessary. In
this context, the Wilcoxon signed-rank test was employed. The com-
puted 𝑝-value, amounting to 2.7 ×10−11, indicates the presence of a
statistically significant difference between the two solution methods.
Consequently, it becomes evident that the adaptive approaches guided
by the proposed knowledge mechanisms have culminated in the de-
velopment of the improved variant of the DA-GVNS, the KG-GVNS.
To clarify, the statistically significant difference remains even after
excluding the instance ‘‘dsj1000’’ as an outlier. Specifically, in this case,
the reported 𝑝-value is 4.29 ×10−11. Figs. 1 and 2 present the differences
in performance between DA-GVNS and KG-GVNS across each sTSP
instance. It is important to note that Fig. 1 includes the ‘‘dsj1000’’
nstance, whose objective value is significantly larger than those of the
ther instances. As a result, this figure does not provide a clear view
f the relative advantages of KG-GVNS. By excluding the ‘‘dsj1000’’
nstance in Fig. 2, the benefits achieved by KG-GVNS become more

apparent, allowing for a more accurate comparison of the methods
cross the remaining problem instances. More specifically, positive
alues indicate instances where KG-GVNS outperforms DA-GVNS.
 a

6 
3.3. KG-GVNS compared with other heuristic methods

Although the current study primarily concentrates on exploring the
potential advantages derived from augmenting the DA-GVNS through
the incorporation of knowledge-guided mechanisms, it is imperative
o assess the performance of the newly introduced KG-GVNS in com-
arison to other efficient solution methods. This comparative study
ncorporates five recently proposed efficient metaheuristic solution
pproaches, along with one of the latest enhanced variants of the VNS
ramework, for addressing the TSP. More specifically, an improved
NS [44], noted as ‘‘A’’; a hybridization of rider optimization and spot-

ted hyena optimization algorithm [45], noted as ‘‘B’’; a deer hunting
linked earthworm optimization algorithm [46], noted as ‘‘C’’; a discrete
parrow search algorithm [47], noted as ‘‘D’’; a heuristic smoothing

ant colony optimization algorithm with differential information [48],
noted as ‘‘E’’, and a discrete komodo algorithm [49], noted as ‘‘F’’.
The corresponding average objective values are provided in Table B.8.
However, Table 5 presents the performance comparisons between KG-

VNS and the other algorithms. Specifically, the comparisons focus on
he Average Performance, which indicates the mean solution quality

achieved by KG-GVNS and each method across the instances where
both reported results. The Median Performance provides an additional
perspective on central tendency by showing the median solution quality
for each method. The Percentage Performance Deviation measures
how much the other methods deviate from KG-GVNS. Positive values
indicate that KG-GVNS outperforms the other methods, while negative
values show that the other methods perform better. The Percentage
of Best-Known Solutions reports the percentage of instances where
ach method achieved the best-known solution. Finally, the Average
PU execution time provides valuable insights into the computational
fficiency of each method.

Table 5 provides a comprehensive comparison between KG-GVNS
and several state-of-the-art metaheuristic methods (A, B, C, D, E, F).
Specifically, the performance metrics evaluated include the average and
median solution quality, percentage performance deviation, percentage
of best-known solutions achieved, and average CPU execution time for
each method. KG-GVNS exhibits a consistent and competitive perfor-

ance across multiple metrics. The average performance of KG-GVNS
s superior to methods B and F and is highly competitive with methods
 and C. It achieves an average percentage performance deviation of
.3% to 2.03% over methods A, B, and F, indicating a significant advan-
age in solution quality. Positive values in the percentage performance
eviation metric confirm that KG-GVNS consistently outperforms the
ther methods across several instances, highlighting its robustness and
fficiency. Additionally, KG-GVNS achieves the best-known solutions
n 33.33% to 50% of the instances, demonstrating its capability to
onsistently reach optimal or near-optimal solutions. In contrast, the
ompeting methods exhibit lower success rates, with methods B, C, and
 achieving best-known solutions in only 15% to 25% of instances.

Moreover, the computational efficiency of KG-GVNS is evident in
its lower average CPU execution times compared to other methods. For
instance, the average CPU time of KG-GVNS is approximately 35.92 s,
whereas method A requires significantly more time (3462.48 s on
average). Additionally, some methods (B and F) did not report CPU
time (‘‘NS’’), further highlighting the thoroughness of the KG-GVNS
evaluation. Notably, the utilization of double stars (∗∗) in reference to
the work by Zhang et al. (2022) signifies that the reported execution
time pertains to the average maximum required execution time of the

ethod.
An important note is that the results presented in Table 5 are

based on the specific instances where both KG-GVNS and each com-
eting method reported results. Unlike the other algorithms that se-

lectively evaluated only a subset of the TSPLib instances, KG-GVNS
was tested on the entire TSPLib dataset. This reinforces the validity
nd generality of KG-GVNS, suggesting that the other methods may
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Fig. 1. Differences between DA-GVNS and KG-GVNS.
Fig. 2. Differences between DA-GVNS and KG-GVNS by excluding instance ‘‘dsj1000’’.
Table 5
KG-GVNS vs Other Algorithms: Performance Metrics.

Metric vs A vs B vs C vs D vs E vs F
Average (KG-GVNS) 49 635.12 57 289.25 47 255.09 43 432.43 518 147.15 26 291.7
Average (Other) 50 423.58 55 513.2 45 848.98 43 030.01 495 693.96 27 008.7

Median (KG-GVNS) 22 136.5 7230.5 21 294 26 427 21 282 15 075.5
Median (Other) 22 167 7330.25 21 340 26 460.13 21 282 15 341.35

Percentage Performance Deviation 1.3 2.03 0.16 −0.1 −0.81 1.79

% of Best-Known Solutions (KG-GVNS) 33.33 37.5 33.33 33.33 34.15 50
% of Best-Known Solutions (Other) 15 25 21.21 16.67 70.73 13.64

Average CPU execution time (s) (KG-GVNS) 35.92 37.71 35.18 34.9 33.43 26.77
Average CPU execution time (s) (Other) 3462.48 NS NS 187.59∗∗ 14 022.25 NS
have selected instances that favored their performance, whereas KG-
GVNS demonstrated robustness across a wider set of problems. The
enhanced performance of KG-GVNS can be attributed to the novel
knowledge-guided adaptive mechanisms integrated into the algorithm.
These mechanisms enable KG-GVNS to dynamically adjust its search
components and strategies, effectively balancing exploration and ex-
ploitation. This adaptability allows KG-GVNS to escape local optima
7 
and explore the solution space more thoroughly, contributing to its
competitive edge, particularly on larger and more complex instances.

In summary, the results substantiate the competitive nature of
KG-GVNS, not only in terms of solution quality but also in com-
putational efficiency. Its ability to consistently achieve high-quality
solutions across a wide range of TSPLib instances, combined with its
lower execution times, highlights its potential as a powerful tool for
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Table 6
Performance comparison of DA-GVNS-FI, DA-GVNS-BI, and KG-GVNS.

Metric DA-GVNS-FI DA-GVNS-BI KG-GVNS

Mean Avg Solutions 72880608.28 69994234.88 68 577 814.02
Mean Best Solutions 71085883.37 67511773.20 67 255 390.87
Mean Worst Solutions 74457955.33 72691669.50 71 998 220.77
Median Avg Solutions 264 250.50 263 092.50 260 994.70
Median Best Solutions 259 828.00 260 562.00 260 080.00
Median Worst Solutions 267 423.00 265 934.00 261 983.00
Mean Best CPU Solution (s) 39.77 37.70 38.70
Mean CPU (s) 48.55 48.75 48.92
Mean SD 1106756.87 1883677.20 1600204.67
Avg Performance Deviation (%) 4.41 4.02 3.51

solving challenging instances of the TSP. This competitive performance
underscores the significant contributions of its adaptive mechanisms,
positioning KG-GVNS as a promising approach in the field of combi-
natorial optimization. Further refinements of the method could build
upon this strong foundation to enhance its efficiency and applicability
in solving even more complex problem instances.

3.4. Computational results on QAP instances

This section summarizes the comparative computational analysis
between the KG-GVNS and the DA-GVNS on selected instances of
the classic QAP. Table 6 provides an overall summary of the re-
sults of the conducted computational analysis on the selected QAP
instances. The results highlight KG-GVNS as the most efficient method,
offering not only the best solutions but also the most stable perfor-
mance. To mention here, that a random permutation was utilized as
the primary initialization approach for the QAP instances. This ensured
that even the same method initiated from different solutions across
independent runs, introducing variability in the starting conditions
for the algorithms. Additionally, it was observed that the KG-GVNS
often commenced from lower-quality solutions compared to the DA-
GVNS methods. This highlights the robustness and effectiveness of the
adaptive components in the KG-GVNS algorithm, which significantly
improved upon these initial solutions. Despite KG-GVNS has a slightly
higher mean CPU time compared to DA-GVNS-FI and DA-GVNS-BI,
the differences are marginal, indicating that while KG-GVNS provides
better solution quality and stability, this improvement does not come
at a significant computational cost. The slight increase in CPU time for
KG-GVNS is a reasonable trade-off considering its superior performance
in minimizing the QAP solutions.

To further investigate the performance enhancements achieved in
KG-GVNS, a convergence analysis was conducted in two randomly
selected QAP instances. More specifically, The convergence perfor-
mance of the KG-GVNS and DA-GVNS algorithms has been evaluated on
two benchmark instances, lipa70b and tai100b, with objective values
plotted against CPU time, as illustrated in Figs. 3 and 4 respectively.
To clarify, in the subsequent investigations, the most efficient variant
of DA-GVNS, referred to as DA-GVNS-BI, is considered as DA-GVNS.

For the lipa70b instance, KG-GVNS starts with a higher initial
objective value (5.97 million) compared to DA-GVNS (5.96 million), in-
dicating that KG-GVNS begins from a less favorable solution. However,
KG-GVNS shows a more rapid improvement in the objective value over
the iterations, reaching the optimal value significantly faster than DA-
GVNS. KG-GVNS converges within 22.58 s, whereas DA-GVNS requires
more than 37 s to reach the same optimal value. This highlights the su-
perior performance of KG-GVNS, as it converges to the optimal solution
using fewer computational resources. Although DA-GVNS eventually
reaches the same optimal solution, it does so more slowly, making it
less efficient for this particular instance.

In the case of the tai100b instance, the convergence behavior of the
two algorithms is even more distinct. DA-GVNS begins with a better
initial solution, with an objective value of 1.74 billion, while KG-GVNS
8 
Fig. 3. Convergence analysis between DA-GVNS and KG-GVNS in lipa70b.

Fig. 4. Convergence analysis between DA-GVNS and KG-GVNS in tai100b.

starts at 1.8 billion, reflecting that KG-GVNS initially explores a worse
solution. Despite this, KG-GVNS rapidly improves and surpasses DA-
GVNS after approximately 30 s. By the end of the computation time
(60 s), KG-GVNS reaches an objective value of 1,331,311,294, better
than DA-GVNS, which converges to 1,335,968,289 as well. KG-GVNS
demonstrates faster convergence and reaches the best-known solution
earlier, making it more efficient in this instance as well.

In both cases, KG-GVNS demonstrates superior performance in
terms of convergence speed and final objective value. Notably, KG-
GVNS achieves better results with less CPU time in both instances.
DA-GVNS, though eventually reaching comparable results to KG-GVNS,
takes significantly longer to converge, suggesting it is less suitable for
time-sensitive or large-scale problems where computational efficiency
is critical. The results indicate that KG-GVNS is more effective at
quickly escaping local optima and converging to globally competitive
solutions, with a clear performance advantage in larger instances such
as tai100b, where computational time becomes more critical.

Thus, KG-GVNS has demonstrated greater efficiency and robustness
in solving combinatorial optimization problems, particularly in larger
instances where computational efficiency is critical. While DA-GVNS
eventually achieves competitive results, its slower convergence and
higher CPU time consumption limit its applicability in scenarios with
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Table A.7
Comparison of DA-GVNS and KG-GVNS Results (average values).

Instance Best-known DA-GVNS KG-GVNS

a280 2579 2614 2603
ali535 202 339 214 790 212 663
att48 10 628 10 628 10 628
att532 27 686 28 947 28 627
bayg29 1610 1610 1610
bays29 2020 2020 2020
berlin52 7542 7542 7542
bier127 118 282 119 122 118 465
brazil58 25 395 25 395 25 395
brg180 1950 1962 1954
burma14 3323 3323 3323
ch130 6110 6154 6127
ch150 6528 6595 6551
d198 15 780 15 855 15 813
d493 35 002 36 497 36 276
d657 48 912 52 184 51 643
d1291 50 801 54 778 54 727
d1655 62 128 67 292 67 201
d2103 80 450 83 336 83 137
dantzig42 699 699 699
dsj1000 18 659 688 20 080 489 19 800 452
eil51 426 426 426
eil76 538 538 539
eil101 629 633 632
fl417 11 861 12 019 11 974
fl1400 20 127 21 858 21 435
fl1577 22 249 24 147 24 165
fl3795 28 772 35 913 35 702
fnl4461 182 566 215 919 215 477
fri26 937 937 937
gil262 2378 2451 2408
gr17 2085 2085 2085
gr21 2707 2707 2707
gr24 1272 1272 1272
gr48 5046 5046 5046
gr96 55 209 55 306 55 210
gr120 6942 6981 6971
gr137 69 853 70 123 69 967
gr202 40 160 41 011 40 780
gr229 134 602 137 426 136 148
gr431 171 414 180 715 177 949
gr666 294 358 312 962 309 699
hk48 11 461 11 461 11 461
kroA100 21 282 21 282 21 282
kroB100 22 141 22 165 22 163
kroC100 20 749 20 749 20 749
kroD100 21 294 21 294 21 294
kroE100 22 068 22 121 22 110
kroA150 26 524 26 817 26 649
kroB150 26 130 26 256 26 205
kroA200 29 368 29 807 29 550
kroB200 29 437 30 015 29 538
lin105 14 379 14 390 14 379
lin318 42 029 43 201 43 045
nrw1379 56 638 60 576 60 147
p654 34 643 35 154 35 065
pa561 2763 2899 2886
pcb442 50 778 53 009 52 152
pcb1173 56 892 61 725 61 454
pcb3038 137 694 152 209 152 087
pr76 108 159 108 159 108 159
pr107 44 303 44 303 44 334
pr124 59 030 59 050 59 030
pr136 96 772 97 062 97 004
pr144 58 537 58 537 58 537
pr152 73 682 73 839 73 763
pr226 80 369 80 880 80 378
pr264 49 135 49 880 49 523
pr299 48 191 49 719 49 088
pr439 107 217 112 600 110 626
pr1002 259 045 277 867 275 581
pr2392 378 032 414 696 413 580

(continued on next page)
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Table A.7 (continued).
Instance Best-known DA-GVNS KG-GVNS

rat99 1211 1211 1212
rat195 2323 2364 2340
rat575 6773 7179 7073
rat783 8806 9445 9290
rd100 7910 7910 7910
rd400 15 281 15 915 15 772
rl1304 252 948 279 174 278 298
rl1323 270 199 292 819 290 911
rl1889 316 536 343 218 343 002
rl5915 565 530 688 254 683 171
rl5934 556 045 651 867 647 776
si175 21 407 21 421 21 421
si535 48 450 49 102 48 648
si1032 92 650 92 962 92 973
st70 675 675 675
swiss42 1273 1273 1273
ts225 126 643 126 746 126 643
tsp225 3916 4001 3946
u159 42 080 4216 42 636
u574 36 905 39 583 38 896
u724 41 910 44 814 44 444
u1060 224 094 241 524 239 558
u1432 152 970 164 611 164 492
u1817 57 201 61 861 62 084
u2152 64 253 70 577 70 284
u2319 234 256 243 332 242 769
ulysses16 6859 6859 6859
ulysses22 7013 7013 7013
vm1084 239 297 256 456 252 798
vm1748 336 556 369 787 370 225

Average 256 414.66 278 121.25 273090.16

strict time constraints or larger problem sizes. These findings sug-
gest that KG-GVNS is better suited for practical applications requiring
high-quality solutions within limited timeframes, making it the more
ppropriate algorithm for real-world optimization tasks.

However, to substantiate the claim of improved performance of
KG-GVNS, the reported differences between DA-GVNS and KG-GVNS
should be evaluated using a valid statistical test. The statistical analysis
conducted to assess the performance differences between KG-GVNS
and DA-GVNS revealed important insights. First, the Shapiro–Wilk test
was applied to check the normality of the data for both algorithms.

he results showed that the data for both KG-GVNS (W = 0.284, p
0.0001) and DA-GVNS (W = 0.283, p < 0.0001) did not follow

a normal distribution, as indicated by the extremely low p-values.
iven the non-normality of the data, a non-parametric test was deemed

appropriate. The Wilcoxon Signed-Rank test was then used to compare
the performances of the two algorithms. The test results (Test Statistic =
8.0,p = 0.0036) indicated a statistically significant difference between
he two algorithms, with KG-GVNS showing superior performance.
his significant 𝑝-value (< 0.05) supports the conclusion that the
erformance difference between KG-GVNS and DA-GVNS is not due
o random chance, but reflects a real, measurable improvement in the
fficiency of KG-GVNS over DA-GVNS.

4. Conclusions

In conclusion, this study has undertaken the task of introducing
innovative adaptive elements into the DA-GVNS algorithm with the
overarching goal of enhancing its computational efficiency. Extensive
experimentation, utilizing the TSP and the QAP as benchmarks, has
revealed several noteworthy findings. The primary contributions of this
research encompass the incorporation of a novel adaptive re-ordering
mechanism in the improvement phase of DA-GVNS, the development
of a knowledge-driven adaptive mechanism for dynamically adjusting
shaking intensity, and the introduction of a knowledge-guided adaptive
mechanism to enhance the adaptive search strategy. Through rigorous
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Table B.8
Comparison between KG-GVNS and other solution approaches (average values).

Instance Optimal KG-GVNS A B C D E F

a280 2579 2603 2606.8
ali535 202 339 212 663
att48 10 628 10 628 10 755.8
att532 27 686 28 627 27 934
bayg29 1610 1610
bays29 2020 2020 2020 2020
berlin52 7542 7542 7544.36 7560 7542 7542 7646.25
bier127 118 282 118 465 119 006.39 118 282 118 282
brazil58 25 395 25 395 25 592.72
brg180 1950 1954
burma14 3323 3323 3323
ch130 6110 6127 6153.72 6177.7 6113 6153.65 6110 6307.9
ch150 6528 6551 6644.95 6660.5 6590.15 6528 6653.65
d198 15 780 15 813 16 079.28
d493 35 002 36 276
d657 48 912 51 643
d1291 50 801 54 727 56 095.33 50 842
d1655 62 128 67 201 70 337.23 62 147
d2103 80 450 83 137
dantzig42 699 699 699 699 701.35
dsj1000 18 659 688 19 800 452 18 897 396
eil51 426 426 428.98 469.45 426.6 426 429.95
eil76 538 539 552.57 618 543.1 538 547.8
eil101 629 632 648.27 703.2 641.5 629 652.6
fl417 11 861 11 974 12 183.14 11 861
fl1400 20 127 21 435 21 085.98
fl1577 22 249 24 165
fl3795 28 772 35 702
fnl4461 182 566 215 477
fri26 937 937 937 939.5
gil262 2378 2408 2501.86 2430
gr17 2085 2085 2085 2085 2085
gr21 2707 2707 2707 2707
gr24 1272 1272 1272 1272
gr48 5046 5046 5046 5095.9
gr96 55 209 55 210 56 279.8
gr120 6942 6971 6980
gr137 69 853 69 967
gr202 40 160 40 780 40 292.75 42 687.4
gr229 134 602 136 148
gr431 171 414 177 949
gr666 294 358 309 699 294358 294 358 301 073
hk48 11 461 11 461 11 487.1
kroA100 21 282 21 282 21 695.79 21 329 21 290.2 21 282 21 436.65
kroB100 22 141 22 163 22 140.2 22 173.1 22 141 22 453.65
kroC100 20 749 20 749 20 809.29 20 790 20 770.5 20 749 21 080.95
kroD100 21 294 21 294 21 490.62 21 347 21 319.05 21 294 21 750.2
kroE100 22 068 22 110 22 193.8 22 091.9 22 068 22 454.7
kroA150 26 524 26 649 26 947.17 26 566 26 699.85 27 358.5
kroB150 26 130 26 205 26 537.04 26 220.4 26 902.85
kroA200 29 368 29 550 30 339.67 29 410 29 682.15 29 368 30 202.5
kroB200 29 437 29 538 30 453.22 29 850.55 30 911.8
lin105 14 379 14 379 14 395.64 14 736 14 379 14 379 14 379 14 686.65
lin318 42 029 43 045 43 964.93 42 059 42 742.7 42 124 44 379.65
nrw1379 56 638 60 147
p654 34 643 35 065
pa561 2763 2763 3407.6
pcb442 50 778 52 152 50800.24 50 806 51 596
pcb1173 56 892 56 892 63 435.95
pcb3038 137 694 137 694 154 565.4
pr76 108 159 108 159 108 159 108159 108 159 108 159 110 135
pr107 44 303 44 334 44 314.92 44 400 44 322 44 303 44 748.25
pr124 59 030 59 030 59 051.82 59 030 59 030 59 030 59 985.5
pr136 96 772 97 004 97 985.84 97 302.35 96 781 102 296.6
pr144 58 537 58 537 58 563.97 58 537 58 537 59 371.9
pr152 73 682 73 763 73 855.11 73 718 73 731.35 73 682 75 287.75
pr226 80 369 80 378 80 514.64 80 369.2 80 369 83 231.6
pr264 49 135 49 523 51 197.14 49 271.85 49 135 52 501.75
pr299 48 191 49 088 50 373.12 48 205
pr439 107 217 110 626 111 771.2 107 844.9 107 259 114 640.8
pr1002 259 045 275 581 280 563.9 259 045 266 352.35
rat99 1211 1212 1241.26 1272 1211 1224.55
rat195 2323 2340 2453.81 2343.8 2326.75

(continued on next page)
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Table B.8 (continued).
Instance Optimal KG-GVNS A B C D E F

rat575 6773 7073 7362.51 6841 7120.95
rat783 8806 9290 9707.36 8893
rd100 7910 7910 7918.36 8000
rd400 15 281 15 772 16 250.21 15 354 15 996.05
rl1323 270 199 270 199 295 611.2
st70 675 675 677.11 729 675.15 675 684.1
swiss42 1273 1273 1273
tsp225 3916 3946 3926.05 3916 4096.05
u159 42 080 42 636 42 467.61 42 131 42 262.75
u574 36 905 38 896 39 629.11
u724 41 910 44 444 45 729.71 41 910
u2319 234 256 242 769 262 595.6
ulysses16 6859 6859 6920.1 6859 6859
ulysses22 7013 7013 7036.1 7013 7013
vm1748 336 556 370 225 366 757.8
Table C.9
Comparison of DA-GVNS-FI and DA-GVNS-BI.

Instance DA-GVNS-FI DA-GVNS-BI

Average Best Worst SD Average Best Worst SD

bur26a 5 426 670 5 426 670 5 426 670 0.00 5 426 670 5 426 670 5 426 670 0.00
esc32h 438 438 438 0.00 438 438 438 0.00
esc64a 116 116 116 0.00 116 116 116 0.00
kra32 89 720 89 720 89 720 0.00 89 040 88 700 89 920 549.59
lipa30a 13 178 13 178 13 178 0.00 13 286.3 13 178 13 370 93.33
lipa40a 31 912 31 912 31 912 0.00 31 888.5 31 850 31 921 21.25
lipa40b 476 581 476 581 476 581 0.00 476 581 476 581 476 581 0.00
lipa50a 62 748.1 62 734 62 758 6.71 62 758.3 62 675 62 820 40.85
lipa50b 1272803.2 1 210 244 1 420 738 100 734.50 1 252 443.9 1 210 244 1 422 914 88 968.69
lipa60a 108 222 108 162 108 280 47.12 108 244.8 108 196 108 298 41.07
lipa70b 5 153 361 4 603 200 5 533 792 473 540.32 5 065 972 4 603 200 5 534 341 487 810.99
lipa80b 8 753 901 7 763 962 9 460 258 852 223.12 8756187.8 7 763 962 9 432 991 854 034.04
lipa90a 363 265.4 363 092 363 390 109.47 363 389.6 363 215 363 517 82.56
sko56 34 957 34 754 35 186 142.47 34 928.2 34 774 35 120 125.99
sko64 49 042.2 48 898 49 136 74.85 49 231.8 48 972 49 414 132.47
sko72 67 309.6 67 034 67 576 176.74 67 399.2 66 914 67 764 237.99
sko100a 161 595.6 155 920 165 996 3996.60 160 486.6 158 410 162 042 1226.53
sko100d 159 576.2 154 646 163 756 3415.71 157 082 156 338 157 992 519.31
tai35a 2 464 729.4 2 445 450 2 483 508 11 899.88 2473843.8 2 459 728 2 483 104 8283.99
tai50a 5 087 017.2 5 073 226 5 113 610 11 632.78 5097784.6 5 069 298 5 113 190 14 643.69
tai64c 1 855 928 1 855 928 1 855 928 0.00 1 856 396 1 856 396 1 856 396 0.00
tai80a 13 998 383.2 13 928 418 14 047 106 45 305.48 14 010 838 13 949 636 14 049 848 27 230.74
tai100b 1485392850 1440691662 1521073234 25620429.92 1398197276 1335968289 1464573773 47692565.88
tai150b 598103222.3 592422010 606751245 4992159.41 597 985 263.2 589683420 609369525 5992960.83
tai256c 47 218 730 45 528 164 48 833 050 1049758.50 48094708.8 45 819 930 49 847 968 1293869.86
tho30 150 349 149 936 150 578 226.76 150 341.4 149 936 150 810 304.87
tho40 243 210 241 734 245 678 1105.71 243 054.6 241 484 244 022 786.30
tho150 9344106.8 9 301 856 9 376 924 32 544.26 9 269 217.2 9 212 060 9 288 194 42 954.30
wil50 49 035.8 48 934 49 150 64.34 49 048.8 48 946 49 180 80.51
wil100 285 291 277 922 289 168 3111.58 283 130.4 279 640 287 846 2750.23
e

statistical analysis, we have demonstrated the statistical significance
nd positive impact of these knowledge-guided adaptations on the

overall performance of the DA-GVNS. As a result, it is evident that
the proposed knowledge-guided adaptive approaches have successfully
ulminated in the development of an improved variant of the DA-GVNS,
he KG-GVNS. These findings underscore the potential of such adaptive
echanisms to significantly enhance the efficiency and effectiveness

f metaheuristic algorithms, opening up promising avenues for further
esearch in the field of optimization and operational research. Fur-
hermore, through the comparative analysis of KG-GVNS with recently
ntroduced efficient heuristics, it becomes evident that KG-GVNS repre-
ents a highly competitive solution approach, characterized by notably
ow execution time requirements.

In light of the promising results and insights garnered from this
study, several avenues for future research emerge in the realm of adap-
tive metaheuristics. Firstly, further investigation into the fine-tuning
and optimization of adaptive mechanisms, including the exploration of
alternative machine learning techniques, could lead to even more so-
phisticated and effective adaptations within metaheuristic algorithms.

Additionally, the application of these adaptive mechanisms to a broader

11 
spectrum of combinatorial optimization problems beyond the TSP and
the QAP could shed light on their versatility and generalizability.
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Appendix A. Results on symmetric TSP instances

Table A.7 presents the optimal objective values alongside the av-
rage performance of both DA-GVNS and KG-GVNS on the symmetric

instances from TSPLib. The reported averages were computed over ten
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Table C.10
Results of KG-GVNS on QAP instances.

Instance Average Best Worst SD

bur26a 5 429 421 5 426 670 5 431 255 2367.68
esc32h 438 438 438 0.00
esc64a 116 116 116 0.00
kra32 89 558 88 700 90 760 672.85
lipa30a 13 230.8 13 178 13 364 85.18
lipa40a 31 890.6 31 867 31 906 18.88
lipa40b 476 581 476 581 476 581 0.00
lipa50a 62 736.2 62 656 62 786 42.68
lipa50b 1272501.2 1 210 244 1 421 892 100 259.23
lipa60a 108 171.2 108 129 108 209 27.91
lipa70b 4 969 906.1 4 603 200 5 527 301 473 462.80
lipa80b 8 413 042.3 7 763 962 9 400 590 837 999.52
lipa90a 363 255.9 363 173 363 389 69.88
sko56 34 717.2 34 600 34 820 70.55
sko64 49 013.2 48 814 49 182 113.90
sko72 67 189.6 66 802 67 468 211.49
sko100a 159 151 157 196 161 232 1132.55
sko100d 156 651.6 154 976 158 192 991.94
tai35a 2 459 074.6 2 445 556 2 475 244 9930.60
tai50a 5 077 152 5 059 432 5 095 738 14 717.34
tai64c 1 855 928 1 855 928 1 855 928 0.00
tai80a 13 975 247.6 13 899 086 14 016 930 33 781.27
tai100b 1358377042 1331311294 1453784915 40324308.65
tai150b 596 218 569 586977280 599711727 4894721.09
tai256c 47676653.2 45 552 394 49 582 764 1272443.70
tho30 150 190.2 149 936 150 604 280.52
tho40 241 753.6 241 176 242 604 486.61
tho150 9 276 032 9 230 520 9 300 286 22 999.23
wil50 48 972.2 48 838 49 040 13 936.01
wil100 280 235.8 278 984 281 362 1008.06

independent runs of each method for each problem instance. To clarify,
he use of bold font highlights the best solution obtained among the
ethods compared, though these solutions do not necessarily corre-

pond to the known optimal values.

Appendix B. Comparisons between KG-GVNS and other algorithms
n sTSPs

Table B.8 presents the average values for each method, calculated
from ten independent runs on each sTSP instance of the TSPLib. It is
important to clarify that values below the optimal threshold were sys-
tematically excluded from the comparative analysis. These exclusions
were necessary, as such values could result from rounding errors or
deviations from the official guidelines provided by TSPLib. To clarify,
the use of bold font highlights the best solution obtained among the
methods compared, though these solutions do not necessarily corre-
spond to the known optimal values. Additionally, in instances where
the compared methods have achieved the same objective values, even if
these values are equal to the known optimum, they are not highlighted
in bold

Appendix C. KG-GVNS vs DA-GVNS on QAP instances

Tables C.9 and C.10 present the average, best, and worst objective
function values, along with the corresponding standard deviations, ob-
tained from 10 independent runs for each of the selected QAP instances.
n Table C.9, bold font is used to indicate the lowest average objective
alues reported by the two DA-GVNS variants for each selected QAP
nstance. In Table C.10, bold font highlights the instances where KG-

GVNS achieved better solutions than both DA-GVNS variants in terms
of average objective values.

Data availability

We provide links to widely-used benchmark datasets.
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